

Cluster Results on Ion Emitter Operation

Klaus Torkar

Space Research Institute, Austrian Academy of Sciences, Graz, Austria

Mats André (Swedish Institute of Space Physics, Uppsala Division / EFW), Andrew Fazakerley (MSSL, Holmbury St. Mary, United Kingdom / PEACE), Henri Rème (CESR, Toulouse / CIS), and the ASPOC Team: W. Riedler, G. Fremuth, H. Jeszenszky, F. Giner, G. Laky (IWF); C.P. Escoubet, M. Fehringer, R.J.L. Grard, R. Schmidt, H. Arends (ESTEC), B. Narheim, K. Svenes (FFI), A. Pedersen (Univ. Oslo), F. Rüdenauer (IAEA), W. Steiger (ARCS), E. Whipple (Univ. Washington), R.B. Torbert (UNH), R. Goldstein (SwRI)

5th SPINE Workshop, ESTEC, 16–17 September 2003

Contents

- Instrument set-up
- Principle of operation
- Ion beam properties
- Cluster operations summary
- Effect on spacecraft potential
 - Comparison between spacecraft
 - Histograms of potential
 - Beam current spacecraft potential characteristics
- Effect on PEACE electron measurements
- Effect on CIS ion measurements
- Effect on EFW electric field measurements
- Conclusion

Liquid Metal Ion Source

- Liquid Indium (heated to ≈200 C) covers needle
- Field emission of ion beam
- Four emitters integrated in "module"

Instrument ASPOC

- Active Spacecraft Potential Control
- Mass: 1.9 kg
- Power: 2.1 ... 2.7 W
- Lead: IWF Graz
- Major partners: RSSD/ESA, ARC/Seibersdorf, FFI/Norway, UNH/USA

Configuration

Location of ASPOC and electron / ion sensors on spacecraft

Ion Beam Properties

- Energy width at 10 μA: ≈150 eV; low intensity, low energy tail down to ≈500 eV below nominal beam energy
- Species: >90% single charged In+ Minor contributions of other charge states and clusters
- Isotopic composition:

115 amu (95.7%),

113 amu (4.3%)

	0.036		<u> </u>	— Curve	· Curve Fit 0.49 μN (5 μA, 4.7 kV)			
Current [µA]	0.03							
	0.024							
	0.018							
ਹ ,	0.012							
	0.006							
	٥٢		- 10					
	-30	-20	-10 A	0 Ingle [d	10 eg]	20	30	

Typical beam profile

Spacecraft

MU (4.3%)	<u>-</u>					
114 (1.570)	Salsa	Samba	Tango			
yp. Beam Energy [kV]	5.4, 7.4	7.7	5.5, 6.8			
yp. Beam Current [μΑ]	10	12.2, 13.7, 14.5	10, 14.5			

Development of Beam Energy

Cluster operations summary

Table shows status of 21 August 2003

	Spacecraft			
	Salsa	Samba	Tango	Total
Total operation time (hours)	234	2543	2115	4892
Maximum total operation time of a single emitter (hours)		2525	1468	
Number of operations	107	450	373	930
Average duration of single operation (hours)		5.9	5.8	5.5
Maximum duration of single operation (hours)	7.8	36.4	35.8	

Operational status

- Operations on all even-numbered orbits
- Typical sequence with Cluster apogee in magnetotail:
 - 7 hours around outbound cusp crossing
 - 7 hours centred at neutral sheet
 - 7 hours around inbound auroral zone crossing
- Ion current: between 10 and 15 µA

Example of ASPOC ion beam turn-on

ASPOC Operations on Cluster 3 in 2001; Measured Potential Before and After

MAP

- Lines show operation times
- Spacecraft potential measured by double probes (EFW) shown as colored triangles

Spacecraft Potential on Cluster 2,3,4 in Comparison with Cluster 1 During Active Periods of ASPOC on Cluster 2,3,4

2001, EFW Potential, ASPOC ON, SC1 & SC2

Comparison of Spacecraft Potential Before and After Beam Turn-on

Example of current-voltage characteristics, Spacecraft potential (EFW), Cluster 2

ASPOC Operations on 25 September 2000 10:35 - 16:42

Histograms of Spacecraft Potential

- Prime Parameter data of s/c potential measured by EFW
- Covering year 2001
- Data from the same s/c for different times

Comparison of Spacecraft Potential Between Cluster 1 and 2, ASPOC OFF

Comparison of Spacecraft Potential Between C1 and 2, ASPOC ON for C2

Effect on PEACE electron measurements

- The following pages show the effect of ion beam operation on PEACE electron measurements, in various regions of the magnetosphere (polar cap, magnetotail, highaltitude cusp)
- Electron measurements not only benefit from the improvement of the data, but also from the increased lifetime of micro-channel plates, when photo-electron count rates stay low

Magnetotail

10 Sept. 2001 Sep. dist. 2000 km

Plasma sheet: $ne=0.1-0.2 \text{ cm}^{-3}$ Vs/c=20V

Tail lobe: ne=0.01 cm⁻³ Vs/c=45V

Vaspoc=9V AE<50nT, Kp=1 23 MLT, close to apogee, near XY-plane

Svenes et al., 2003

Effect on CIS ion measurements

- Changes of the spacecraft potential between <10 V and >20 V clearly influence the measurements of cold ions by the Cluster Ion Spectrometer (CIS)
- Effects can be seen in H+, He+, O+ and total ion density data.
- This is demonstrated by examples on the following pages

ASPOC SUPPORTS DETECTION OF LOW-ENERGY He+ AND He+ IONS IN LOW DENSITY REGIONS

The Cluster Ion Spectrometer (CIS) measures significantly higher flux of low-energy H⁺ and He⁺ in low density regions when the ASPOC is active

The switch-off of ASPOC is clearly visible

On S/C3 CIS stops to observe low-energy H⁺ and He⁺ after 15:19:57.

Effect is particularly clear on the He+ population (20 to 70 eV) on S/C4 from ≈16:40, and which was never observed on the other spacecraft on which ASPOC was off during that interval

Cold Ion Beam SC 3; 14 Oct 2001

 Duskward/tailward streaming cold H⁺ appears only after ASPOC turn-on at 15:58 (with 12 µA)

ASPOC Support for EFW Electric Field Measurements

Conclusions – 1

- While ASPOC is emitting 10 µA ion current, the spacecraft potential does not exceed 8 to 9 V
- With 12 to 15 μ A => 6 to 7 V
- Histograms peak at ≈7 V when ASPOC is active
- Significant improvement of low energy electron measurements, without compromising wave and electric field measurements
- At times when the ion beam turns on while the plasma environment remains constant one can nicely study the effect of spacecraft potential control
- The reduction of photo-electron counts in the measurements and the improvement of the effective energy resolution is most obvious in any low density environment

Conclusions – 2

- In spite of the low ambient density the ion beam does not appear to have a measurable effect on the incoming electrons at the present state of analysis; further work is to be done, including simulation
- Changes of the spacecraft potential between <10 V and >20 V clearly influence the measurements of cold ions; effects can be seen in H⁺, He⁺, O⁺ and total ion density data, and on both spacecraft 3 and 4 ⇒ observations are not specific to a single instrument or spacecraft.
- Electric field measurements by double probes may benefit in certain environments